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Do What? How?

* Find the surface normal to the embedded surface?
® Locate an object within the volume?

* Take the derivative of a kidney?

* How do | evaluate the error introduced by sampling?
* What is aliasing, really?

* How does this all work together in volume graphics?

Image Basics

* Given a discrete volume dataset, vol[x][y][z]

* Imagine a volume generating function, f, such that for any
particular point p; = (X;,Y;,2;):

(xi,y3,2;) = vol[xi][yil[z]

* Must reconstruct f(x,y,z) from vol[x][y][z].
* Can make measurements of f(x,y,z), (e.g.,derivatives)

* HOW?

Convolution

* Sampling.

* |nterpolation.

® Reconstruction.

® Low pass filtering.

* Noise suppression.

* Edge enhancement.

* Derivative measurement.

® Linear scale space analysis.

Convolution
Convolution integral

h() 01(x) = [ h(D)l(x~ 1) dt

Convolution & the Gaussian
Convolution integral

h() 01(x) = [ h(D)I(x~ 1) dt

Gaussian as a convolution kernel
(with spatial scale parameter, o)

X

h(x) =G(0,X) = 54z




Smoothing - noise filtering

Input, @(x) O Kernel, G(x,0) = @(x) O G(x,0)

Linear Scale Space
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Convolution in 2D

=@(p) 0 G(p,0)

Input
nput, @(p) Kernel, G(p,0)

Properties of the Convolution
Operator

Convolution & differentiation
* Problem: Real-world data are seldom
accompanied with continuous functions,
suitable for differentiation.

* Observation: Differentiation is just a ol 1/(2€)
convolution!
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* Problem: Derivatives of real-world data are not always
defined.

* Observation: Differentiation is associative and commutative.
h(x) 0@ /0x O f(x) = 8/0x O h(x) O f(x)

* Solution: Combine differentiation with a regularizing kernel.

Property: Mathematically:
* Commutative. efO0h=h0Of
® Associative e(fOh)yOg=f0O(Og)
® Distributive over efO(+g)=(F0h)+(fOQ)
addition.
Differentiation

Not-differentiable NaN




Differentiation

Differentiation
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Differentiation

Now for something different...

But not completely different...

em=-1

e*B=cosa +isinf




The Fourier Transform

* A different mirror with which to view images.

® The Fourier transform
o y
Fow) = [ o@emrde = a)
—00

* The result transforms a function of x in image space to a
function of vin frequency space.
* There is an Inverse Fourier transform for undoing this process.
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Fourier Transforms of common
functions

Image Space: Erequency Space:
Box b F(Box)

(nearest neighbor) b sinc

Pyramid F(Pyramid)

(linear interpolant) (linear interpolant)

Gaussian b Gaussian [1
(std. distribution) P (non-normalized) 4‘\
Comb / Shah 3 Comb

! shah ;
(sampling function) i ] L,,J;:,,,,J,,J,

Properties of the Fourier

Transform
Property: Property:
* Frequency Scaling = ® Spatial Scaling =
Inverse Spatial Scale Change Inverse Frequency Scale Change
1 v
2L (Y (o)) — F(glaw) = =2 (=
7 (2) () = 2@ at(2)
and and
1 v
1 v FH@e(aw) = =¢ (-
1 - —_) =
dl (a) é(ax) la| (a)

The Convolution Theorem
* Convolution in space = multiplication in frequency

F(p(x) © h(x)) = 2()H ()

* Convolution in frequency = multiplication in space

FHe(v) w H(v)) = ¢(z)h(x)

Revisiting Convolution

now see convolution as a transform, a
multiplication, and an inverse transform.

p(a)gh(x) = FHF () F (h(x)))

Revisiting Convolution (2)
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| Fourier Transform | Inverse Fourier |




Revisiting Convolution (3)

O

| Fourier Transform |

F(Input), d(x) x Kernél

Input, @(x) O Kernel, g(x,0)

=@(x) O g(x,0)
Inverse Fourier f

| G(x,0) = ®(x) x G(v,0)

Discrete Fourier Transforms

* Periodic.
* Assume that the function is a single period of a
infinitely repeating function.
*Or: Think of it as an image that wraps onto itself
like a doughnut (torus).

* Discrete.

e |f there are n samples in the spatial domain, there
will be n samples in frequency domain, too.

Discrete Fourier Transforms (1)

Discrete Fourier Transforms (2)
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Fourier transform. (a) square wave; (b) spectrum; (c) partial sums.

(from G. Wolberg, 1990, Digital Image Warping, IEEE Press)

Discrete Fourier Transforms (3)
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Fourier transform. (a) aperiodic signal; (b} spectrum; (c) partial sums.

(from G. Wolberg, 1990, Digital Image Warping, IEEE Press)

Sampling

now see sampling as a multiplication with
frequency issues.




Sampling (2)
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Note: adding more

(higher) frequencies
alters the period of x
the ringing, but does

not reduce the '

amplitude. —
|

(from A. Glassner, 1995,
plesof Digital Imag
Morgan Kaufman)

Sampling (3)

e Bandlimited.

* Asignal gis considered bandlimited if its Fourier transform,
F(¢(x)) = ®(w) satisfies the following condition

H(w) =0 and &(-w) =0 forall w > wyp;
* Satisfies the Nyquist criterion.

« The discrete signal does not contain frequencies higher than 1/2 the
sampling frequency

Aliasing

* Signal that isn’t Bandlimited.
e Sampling effects.
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Sources of Aliasing

Non-bandlimited signal

. =k

Low sampling rate (below Nyquist)

A Aha

Non perfect reconstruction
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Possible Errors

* Post-aliasing

eReconstruction filter passes frequencies beyond the Nyquist frequency
(of duplicated frequency spectrum) => frequency components of the
original signal appear in the reconstructed signal at different frequencies.

* Smoothing

eFrequencies below the Nyquist frequency are attenuated.

Possible Errors(2)

* Ringing (overshoot)
*QOccurs when trying to sample/reconstruct discontinuity.
* Anisotropy

eCaused by non-spherically symmetric filters.
eRequires filters that are invariant with respect to rotation.




the pipeline (westover “91)

Discrete Continuous Discrete
3D 3D 2D
Input Reconstruct
(filtering)

Transform

Manipulation & analysis:
shade,project, composite
(opacity,‘ scatter, density)

Antialias wirt 2D
(filtering)

l Resample H Image

input

e Bandlimited.

* Appropriately sampled: above the Nyquist
frequency.

Reconstruction - Interpolation

2D D
Given:
Given: R | A
- % HH M« _____________ X
|
Needed: f

Example in 1D

How? Convolution

Interpolation (summary)

* Very important; regardless of algorithm
expensive => done very often for one image
* Requirements for good reconstruction

* performance
e stability of the numerical algorithm
* accuracy

Nearest
neighbor

Linear




the pipeline (westover “91)

Discrete Continuous Discrete
3D 3D 2D
Input Reconstruct

(filtering)

Transform

Manipulation & analysis:
shade,project, composite
(opacity,‘ scatter, density)

Antialias wirt 2D
(filtering)

l Resample H Image

Transformation magnify / minify

* Remember, spatial scaling = inverse frequency scale.

* Magnification / scaling of the reconstructed input O
transformation / minimization of the sampling
function.

* Minification / scaling of the reconstructed input O
transformation / magnification of the sampling
function.

Resample

* with antialiasing

* without antialiasing

Summary

For (n = 1; n <image_size; n++)
gradx[n] = image[n-1] * -0.5 + image[n+1] * 0.5;

You’re really approximating...

With all the consequences in the
frequency domain!

Summary

* Convolution is a basic operation, used in:

* interpolation, reconstruction.
* Noise filtering.

e Differentiation, measurement.
* Statistics.

* The frequency domain.

* |t exists.

* Operations in discrete images have frequency based
consequences.

* |t’s happening whether you’re watching for it or not.




